
Brief background on eigenvectors and eigenvalues:

A vector w is an eigenvector of matrix with eigenvalue if and only if .Σ λ Σ𝑤 = λ𝑤

A size of an eigenvector is given by the magnitude of its eigenvalue.

The eigenvalues of a symmetric matrix are always real numbers and its eigenvectors form an
orthonormal basis. Since the covariance matrix is symmetric, its eigenvalues are real.Σ

Principal component analysis

We have seen that the solution to the PCA objective is given by the largest eigenvector of the
covariance matrix. To recap what we saw in the slides we want to solve the optimization
problem below:

𝑎𝑟𝑔𝑚𝑎𝑥
𝑤

 𝑤𝑇Σ𝑤 𝑠. 𝑡.  𝑤𝑇𝑤 = 1

where is the covariance matrix.Σ

We form the Lagrangian:

𝐿(𝑤, λ) =  𝑤𝑇Σ𝑤 + λ(𝑤𝑇𝑤 − 1)

We have to solve the Lagrangian:

𝑑𝐿/𝑑𝑤 = 0 𝑎𝑛𝑑 𝑑𝐿/𝑑λ = 0

When we do we get𝑑𝐿/𝑑𝑤 = 0

𝑑𝐿(𝑤, λ)/𝑑𝑤 =  2Σ𝑤 + 2λ𝑤 = 0

𝑑𝐿(𝑤, λ)/𝑑𝑤 =  2Σ𝑤 =− 2λ𝑤

which means that the solution w is just the eigenvector of Σ.

Eigenvectors of various matrices



Matrix Meaning of the eigenvector

Covariance matrix XXT The data will have the highest variance when
projected on the largest eigenvector

Kernel matrix XTX The projection of the data on the eigenvector
of the covariance matrix that gives the
highest variance

Data matrix X Singular vectors are the eigenvectors of the
covariance matrix and the singular values
squared are the eigenvalues of the
covariance matrix

Random projections

Random projections will preserve distances between pairs of datapoints. This may not be useful
for visualization because we may need several random projections. But it will be useful for very
big data with high dimensions. This can occur in text analysis where you have millions of
datapoints and let’s say a 100,000 dimensions. In this case you may want to perform a random
projection to let us say 100 dimensions and then analyse the big dataset in this reduced
dimensionality space.

Supervised dimensionality reduction

What is a simple objective to do supervised dimensionality reduction?

In PCA we looked for a w of length 1 that maximizes the variance of the projected data. In
supervised learning we have labels. Can we use the labels to do a better projection? Consider
the objective below:
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Let us modify the objective to be . Rewrite the objective𝑎𝑟𝑔𝑚𝑎𝑥
𝑤
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in the form and now we can solve it just like we did PCA. But what𝑎𝑟𝑔𝑚𝑎𝑥
𝑤

 𝑤𝑇𝑀𝑤  𝑠. 𝑡.  𝑤𝑇𝑤 = 1

is M?

We can find the optimal w to the above problem with Lagrange multipliers.

We can add to the above objective the variance in the denominator and now we have the Fisher
or Linear Discriminant Analysis (LDA).

We can add the variance to the denominator and then search for the projection that maximizes
the ratio of the mean to variance.
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We can write the above ratio as
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where Sb is the between class scatter matrix and Sw is the within class matrix.

If we add Sb and Sw we can get the total scatter matrix St which is also the covariance matrix
that we saw earlier in PCA and in multivariate Gaussian classification.

We solve the above objective again using Lagrange multipliers like we did for PCA and that tells

us that our solution w is the largest eigenvector of .𝑆
𝑤

−1𝑆
𝑏

Calculating the inverse can be a problem if the determinant of the matrix is near 0 (which can
happen frequently). To avoid this we consider a different supervised dimensionality reduction
called the maximum margin criterion.
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where s(C1) and s(C2) represents the variance of class C1 and C2 in the projected space. As
we did for LDA we will use the between class scatter matrix and the within class matrix to
represent the difference of means and the class variances. This gives us the objective
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With Lagrange multipliers we can show that the solution we are looking for is the largest
eigenvector of Sb-Sw. Note that since St=Sb+Sw we can rewrite this as

St - Sw = Sb ->
St - 2Sw = Sb - Sw


